محمد (مهدی، حسین ، جواد )نصرتی
محمد (مهدی، حسین ، جواد )نصرتی
کودکانه
درباره وبلاگ


به وبلاگ من خوش آمدید

____________________
دسته بندی

محمد مهدی

تحقیق سنگها

تحقیق الکتریسیته

تحقیق آهن ربا

تحقیق قلب

عکس

محمد حسین

عکس

بهداشت کوکان

لوازم التحریر

کارنامه محمد مهدی

کارنامه سال چهارم -محمد مهدی

پنجم ابتدائی

ریاضی

تحقیق در زمینه مغز و اعصاب

نجوم

رباتیک

ادبیات

شاعران

کلاس ششم ابتدایی

تحقیق آهن زنگ نزن

کلاس هفتم

ریاضیات

زبان

علوم تجربی

زبان انگلیسی

عربی

قرآن

معارف اسلامی

مطالعات اجتماعی

پایه هشتم

ریاضی

____________________
آرشیو

ارديبهشت 1395

خرداد 1394

اسفند 1392

بهمن 1392

آذر 1392

آبان 1392

ارديبهشت 1392

فروردين 1392

دی 1391

تير 1391

دی 1390

آذر 1390

آبان 1390

____________________
مطالب اخیر

دانلود سوالات ریاضی پایه هشتم
سوالات ریاضی پایه هشتم
ماچگونه میبینیم؟
انیمیشن تجزیه برُدار
نرم افزار محاسبه ريشه n ام يک عدد
نرم افزار محاسبه جذر یک عدد تا 14 رقم اعشار
گسترده های حجم های هندسی
سئوالات عربی
سئوالات عربی
منبع وبلاگ http://classehaftom.blogfa.com/
سوالات اجتماعی هفتم
نمونه سوالات پایه هفتم
نمونه سؤالات ارزشيابي رياضي سال هفتم
دروس ریاضی و علوم تجربی
قرآن ،علوم ،عربی (هفتم )
کتاب هفتم (اول متوسطه اول)
عربی هفتم
سال نو مبارک
محمد حسین و محمد جواد
محمد مهدی و

____________________
نویسنده

علی نصرتی

____________________
لینک ها

سئوالات پایه هفتم

آموزشکار

پورتال اداری آموزشی و پرورشی مدارس

ششم دبستان

باشگاه مجازی معلمان کلاس ششم

دفتر مشق

معلم کلاس ششم

کارشناسی ارشد مدیریت

آموزش هوشمند

نوجوان ها

کیت اگزوز ریموت دار برقی

ارسال هوایی بار از چین

خرید از علی اکسپرس

مستر قلیون

____________________
لینک ها

سوالات هفتم1

هفتمی

سوالات هفتم

سوالات هفتم و هشتم

هفتمی ها

دایره المعارف مقالات و کتب مغز و اعصاب

انجمن مغز و اعصاب ایران

جراح مغز و اعصاب

سایت مداحان اهل بیت

کیت اگزوز

زنون قوی

چراغ لیزری دوچرخه


تبادل لینک هوشمند
برای تبادل لینک  ابتدا ما را با عنوان محمد مهدی و محمد حسین نصرتی و آدرس nosrati.LXB.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.





____________________
امکانات

RSS 2.0

فال حافظ

قالب های نازترین

جوک و اس ام اس

جدید ترین سایت عکس

زیباترین سایت ایرانی

نازترین عکسهای ایرانی

بهترین سرویس وبلاگ دهی


نام :
وب :
پیام :
2+2=:
(Refresh)

خبرنامه وب سایت:





آمار وب سایت:  

بازدید امروز : 12
بازدید دیروز : 0
بازدید هفته : 12
بازدید ماه : 13
بازدید کل : 60617
تعداد مطالب : 58
تعداد نظرات : 0
تعداد آنلاین : 1

شنبه 31 فروردين 1392برچسب:,

مقاومتها

 مقاومت الکتریکی 
عبور جریان الکتریکی از هادی ها از بسیاری جهات شبیه عبور گاز از یک لوله است . اگر این لوله پر از پشم فلزی یا ماده مختلتی باشد ، این شباهت ها بیشتر می شود . اتم های نشکیل دهنده سیم هادی از عبور الکترون ها جلوگیری می کنند ، همانطور که الیاف پشم فلزی مانع عبور مولکولهای گاز می شوند . حال می خواهیم ببینیم که مقاومت هادی ها به غیر از جنس فلز به چه عواملی دیگری بستگی دارد .
تاثیر سطح مقطع بر مقاومت الکتریکی 
مقاومت هر جسمی به الکترونهای آزاد آن بستگی دارد . می دانید که واحد شدت الکتریکی آمپر ( a ) است . یک آمپر یعنی این که 6/28ضرب در 10 به توان 18 الکترون آزاد 
در هر ثانیه از هر نقطه سیم عبور می کند . پس یک هادی خوب باید به مقدار کافی الکترون آزاد داشته باشد تا جریان الکتریکی با چندین آمپر بتواند از آن عبور کند .بنا بر این طبق شکل هرگاه پهنای فلز افزایش یابد ، در حقیقت سطح مقطع زیادتر و در نتیجه ، مقاومت کم تر می شود . پس سطح مقطع عکس مقاومت عمل می کند 
تاثیر طول هادی بر مقاونت الکتریکی :
شاید تصور کنیئ که با افزایش طول هادی عبور جریان راحت تر می شود ولی چنین نیست . اگر چه در یک قطعه مسیبلند تر تعداد بیشتری الکنرون آزاد وجود دارد ولی الکترونهای آزاد اضافی در طول سیم ، در اندازه گیری جریان الکتریکیداخل نمی شود . در واقع هر طول معین از هادی ، مقدار معینی مقاومت دارد و هر چه سیم طویل تر باشد ، مقاومت بیتر می شود . 
تغییرات مقاومت به طول سیم
نکته : تغییر طول و سطح مقطع به میزان دو برابر مقاومت را تغییر نمی دهد . 
اندازه گیری مقاومت الکتریکی در مدار 
مدارهای الکتریکی به دو نوع بسته می شوند : سری یا موازی
اندازه گیری مقاومت الکتریکی در مدارسری
در مدار سری همانگونه که از نامش پیدا است مقاومت ها به دنبال هم بسته شده اند پس باید تمامی مقدار آنها را با هم جمع کرد
اندازه گیری مقاومت الکتریکی در مدار موازی :
در مدار موازی باید حاصل ضرب تمام مقاومت ها را تقسیم بر مجموع مقاومت ها کرد .
کاربرد مقاومت های الکتریکی
مقاومت های اهمی برای اضافه کردن مقاومت مدارهای الکتریکی به کار می روند . در حقیقت ، آنها اجسامی هستند که در مقابل عبور جریان مقاومت زیادی از خود نشان می دهند . موادی که غالباٌ در مقاومت ها به کار می روند عبارتند از کربن ، آلیاژ مخصوص از فلزاتی از قبیل نیکروم ، کنستانتان و منگانان . مقاومت اهمی را طوری به مدار می بندیم که جریان همان طور که از بار الکتریکی و منبع ولتاژ عبور می کند ، از آن هم بگذرد . در این صورت مقاومت کل مدار مجموع مقاومت های بار الکتریکی ، منبع ولتاژ ، سیم های رابط و مقاومت اهمی است . توجه داشته باشید که فقط با اضافه کردن یک مقاومت اهمی مناسب به مدار می توان مقاومت کل مدار را به اندازه ی دلخواه تغییر داد . 
انواع مقامت ها 
مقاومت های ترکیبی
مقاومت های سیم پیچی
مقاومت های لایه ای 
طبقه بندی مقاومت های از نظر نوع کار

مقاومت های ثابت 
مقاومت های ثابت دو سیم رابط دارند که به دو انتهای مقاومت متصل است . اصولا مقدار این نوع مقاومت های ثابت است ولی بعضی از آنها دارای مقاومتهای متفاوتی هستند . این مقاومت ها به دو دسته ی الف - مقاومت ها زبانه دار و ب - مقاومتهای قابل تنظیم تقسیم می شوند . 


الفمقاومت های زبانه دار :
در این نوع مقاومت ها علاوه بر دو سیم انتهایی ، سر سیم های دیگری بین دو سر مقاومت وجود دارد . با اتصال ترمینال های مختلف به مدار مقاومت های متفاوتی حاصل می شود . هر یک از این مقاومت ها دارای مقاومت ثابتی هستند . 

ب) مقاومت های قابل تنظیم :
دیدید که مقاومت های ثابت قابلیت انعطاف ندارند ، زیرا مقاومتشان کاملا تعیین شده و مقدار آن تغییر نا پذیر است . مقاومت های زبانه دار تا حدودی قابلت انعطافدارند ، چون بیش از یک مقدار مقاومت می توان از آنها بدست آورد . با وجود این تعداد مقاومت هایی را که می توان از آنها بدست آورد به 3 یا 4 محدود می شود . آنچه اغلب مورد نیاز است ، مقاومتی است که بوسیله آن بتوان حدود معینی از مقاومت را از 0 تا 1 حد اکثر بدست آورد . این مقاومت ها طوری ساخته نشده اند که بتوان آنها را پیوسته تغییر داد . در واقع ، هنگام نصب این مقاومت ها در مدار، آنها را روی مقاومت دلخواه تنظیم کرده و سپس با همان مقاومت در مدار کار می کنند . 

[IMG]file:///C:%5CUsers%5CKARAMA%7E1%5CAppData%5CLocal%5CTemp%5 Cmsohtmlclip1%5C01%5Cclip_image034.gif[/IMG]مقاومت های متغییر : 
در بسیاری از وسایل الکتریکی مقدار بعضی از مقاومتها باید پیوسته تغییر کند ، پیچ ولوم رادیو ، کنترل کننده روشنایی تلویزیون از آن جمله اند . مقاومتهای متغیر مقاومتهایی هستند که پیوسته می توان مقدار آنها را تغییر داد . 
به آن دسته از مقاومت هاي متغير ، " وابسته " گفته مي شود که به وسيله عواملي از قبيل نور ، حرارت ، ولتاژ و ... مقدار مقاومتشان تغيير کند . اين مقاومت ها انواع مختلفي دارد که عبارت اند از :
الف- مقاومتهاي تابع حرارت THERMISTOR (Tehrmally sensitive resistor): 

مقدار اهم اين مقاومت ها تابع حرارت است . يعني ، در اثر حرارت ميزان مقاومتشان تغيير مي کند. مقاومت هاي حرارتي را تحت عنوان " ترميستور" مي شناسيم . در اين مقاومت ها تغييرات مقدار مقاومت نسبت به تغييرات دما خطي نيست. از اين مقاومت ها در مدارهابه صورت حس کننده(Sensor) هاي حرارتي در مسير دستگاه هاي الکتريکي نظير موتورهاي الکتريکي ، کوره ها ، سيستم هاي تهويه و تبريد استفاده مي شود . به طور کلي ترميستورها در مداراتي که دما را اندازه گيري يا کنترل مي کنند به کار مي روند و در دو نوع ساخته مي شوند .
1- ترميستور با ضريب حرارتي مثبت (PTC)
: که با افزايش دما مقدار مقاومت آن افزايش مي يابد . 

  1. ترميستور با ضريب حرارتي منفي
  2. (NTCکه با افزايش دما مقدار مقاومتش کاهش مي يابد .


ب- مقاومت هاي تابع نور LDR(Light Dependent Resistor):

مقدار مقاومت تابع نور تابع تغييرات شدت نور تابيده شده به سطح آن است. مقاومت تابع نور در فضاي تاريک داراي مقاومت خيلي زياد (در حد مگا اهم ) و در روشنايي داراي مقاومت کم ( در حد کيلو يا اهم ) است . مقاومت هاي LDR را " فتو رزيستور " هم مي نامند . براي اينکه نور روي عنصر مقاومتي فتورزيستور اثر گذارد معمولا سطح ظاهري آن را با شيشه يا پلاستيک شفاف مي پوشانند . از اين مقاومت در مدارات الکترونيکي به عنوان تشخيص دهنده ي نور (نور سنج ) استفاده مي شود . از جمله کاربردهاي اين مقاومت استفاده ي آن در دوربين هاي عکاسي و کليدهاي نوري و چشم هاي الکترونيکي است
.ج- مقاومت هاي تابع ولتاژ VDR ( Voltage Dependent Resistor )
مقاومت هاي تابع ولتاژ ، مقاومت هايي هستند که متناسب با تغيير ولتاژ ، مقاومت آنها تغيير مي کند تا همواره ولتاژ يکساني در مدار وجود داشته باشد . مقاومت VDR را تحت عنوان " واريستور " نيز مي شناسند . مقدار اهم اين مقاومت ها با ولتاژ رابطه ي معکوس دارد . يعني با افزايش ولتاژ مقدار اهم آنها کاهش مي يابد . واريستورها به پلاريته ي ولتاژ اعمال شده وابسته نيستند که اين خود مزيتي براي اين نوع مقاومت ها محسوب مي شود ، زيرا براي استفاده در مدارات AC بسيار مناسب هستند. از جمله کاربرهاي اين مقاومت ها عبارتند از : 
1- تثبيت کنندهاي ولتاژ 2- حفاظت مدارها در مقابل اضافه ولتاژها در لحظات قطع و وصل کليد.
د-مقاومت هاي تابع ميدان مغناطيسيMDR(Magnetic Dependen Resistor): 

مقاومت هاي تابع ميدان به مقاومت هايي گفته مي شود که به سبب اثر ميدان مغناطيسي بر آنها مقدار اهمشان تغيير مي کند . در ساخت اين مقاومت ها از نيمه هادي هايي استفاده شده که داراي ضريب حرارتي منفي هستند. به همين دليل در صورت افزايش دما مقدار مقاومت آن ها کاهش مي يابد . نحوه تعیین مقدار مقاومت ها از روی کد رنگی : رنگ اولین نوار نشان دهنده اولین عدد صحیح مقدار مقاومت است و رنگ دومین نوار نشان دهنده دومین عدد صحیح مقدار مقاومت است . رنگ سومین نوارنشان دهنده ضریب مقاومت است.رنگ نوار چهارم حدود خطا ( تلرانس ) رامعین میکند.
رنگ عدد صحیح مضرب تلرانس
سیاه 0 1
قهوه ای 1 10
قرمز 2 100
نارنجی 3 1000
زرد 4 10000
سبز 5 100000
آبی 6 1000000
بنفش 7 10000000
خاکستری 8 100000000
سفید 9 1000000000
طلائی - - 5%
نقره ای - 10%
بی رنگ - - 20%
کد رنگی خازن*ها

در خازن*های پلیستر برای سالهای زیادی از کدهای رنگی بر روی بدنه آنها استفاده می*شد. در این کدها سه رنگ اول ظرفیت را نشان می*دهند و رنگ چهارم تولرانس (درصد خطا) را نشان می*دهد. برای مثال قهوه*ای - مشکی - نارنجی، به معنی ۱۰۰۰۰ پیکوفاراد یا ۱۰ نانوفاراد است. خازن*های پلیستر امروزه به وفور در مدارات الکترونیک مورد استفاده قرار می*گیرند. این خازنها در برابر حرارت زیاد معیوب می*شوند و بنابراین هنگام لحیم*کاری باید به این نکته توجه داشت.
ترتیب رنگی خازن*ها به ترتیب از ۰ تا ۹ به صورت زیر است:
سیاه، قهوه*ای، قرمز، نارنجی، زرد، سبز، آبی، بنفش، خاکستری، سفید
خازن*ها با هر ظرفیتی وجود ندارند. بطور مثال خازن*های ۲۲ میکروفاراد یا ۴۷ میکروفاراد وجود دارند ولی خازن*های ۲۵ میکروفاراد یا ۱۱۷ میکروفاراد وجود ندارند. دلیل اینکار چنین است:
فرض کنیم بخواهیم خازن*ها را با اختلاف ظرفیت ده تا ده تا بسازیم. مثلاً ۱۰ و ۲۰ و ۳۰ و.... در ابتدا خوب به*نظر می*رسد ولی وقتی که به ظرفیت مثلاً ۱۰۰۰ برسیم چه رخ می*دهد؟ مثلاً ۱۰۰۰ و ۱۰۱۰ و ۱۰۲۰ و... که در اینصورت اختلاف بین خازن ۱۰۰۰ میکروفاراد با ۱۰۱۰ میکروفاراد بسیار کم است و فرقی با هم ندارند پس این مساله معقول به*نظر نمی*رسد. برای ساختن یک رنج محسوس از ارزش خازن*ها، می*توان برای اندازه ظرفیت از مضارب استاندارد ۱۰ استفاده نمود. مثلاً ۷/۴ - ۴۷ - ۴۷۰ و... و یا ۲/۲ - ۲۲۰ - ۲۲۰۰ و...
کد عددی خازن*ها

در خازن*های الکترولیتی معمولا ظرفیت به صورت یک عدد مشخص با واحد مربوطه*اش (pf,nf و...) در کنار ولتاژ ذخیره سازی (حداکثر ولتاژ که در خازن ذخیره می*شود) نوشته شده*است. اما در سایر خازن*ها یک عدد ۳ رقمی به همراه یک حرف انگلیسی (k , j یا m)نوشته شده*است. برای محاسبهٔ ظرفیت این نوع خازن*ها دو عدد اول را در ده به توان عدد سوم ضرب می*کنیم که واحد را بر حسب پیکوفاراد به دست می*دهد. برای مثال اگر روی خازنی عدد 684k نوشته شده باشد به این معنی است که ظرفیت این خازن برابر است با: ۱۰۰۰۰×۶۸ پیکوفاراد یعنی ۶۸۰ نانوفاراد یا ۰٫۶۸ میکروفاراد. حروف نیز به ترتیب بیانگر خطاهای پنج درصد برای j ده درصد برای k و بیست درصد برای m می*باشند.
قانون اُهم
براي بوجود آوردن جريان در يك مقاومت ، بايد يك ولتاژ را در سرتاسر مقاومت ايجاد كنيم . قانون اُهم وابستگي بين ولتاژ ، جريان و مقاومت را بيان ميكند كه به 3 روش مختلف بيان مي شود .
V = I × R


در فرمولهاي بالا واحد ولتاژ ( ولت V ) واحد جريان ( آمپر I ) و واحد مقاومت ( اُهم ) مي باشد در اكثر مدارهاي الكتريكي معمولاً مقدار آمپر بسيار بالا و برعكس مقدار مقاومت معمولاً پائين در نظر گرفته شده است . لذا جريان با ميلي آمپر و اُهم با كيلو اُهم اندازه گيري مي شود .
ترانزیستور ها
معرفی

ترانزیستورهای جدید به دو دسته کلی تقسیم می*شوند: ترانزیستورهای اتصال دوقطبی(BJTs) و ترانزیستورهای اثر میدانی (FETs). اعمال جریان در BJTها و ولتاژ در FETها بیین ورودی وترمینال مشترک رسانایی بین خروجی و ترمینال مشترک را افزایش می*دهد، از اینرو سبب کنترل جریان بین آنها می*شود. مشخصات ترانزیستورها به نوع آن بستگی دارد. مدل های ترانزیستور را ببینید. لغت "ترانزیستور" به نوع اتصال نقطه*ای آن اشاره دارد، اما انی سمبل قدیمی با سمبل هایی را کردند که اختلاف ساختار ترانزیستور دوقطبی را به صورت دقیقتر نشان می*داد، اما این ایده خیلی زود رها شد. در مدارات آنالوگ، ترانزیستورها در تقویت کننده*ها استفاده می*شوند، (تقویت کننده*های جریان مستقیم، تقویت کننده*های صدا، تقویت کننده*های امواج رادیویی) و منابع تغذیه تنظیم شده خطی. همچنین از ترانزیستورها در مدارات دیجیتال بعنوان یک سوئیچ الکترونیکی استفاده می*شوند، اما به ندرت به صورت یک قطعه جدا، بلکه به صورت بهم پیوسته در مدارات مجتمع یکپارچه بکار می*روند. مدارات دیجیتال شامل گیت های منطقی، حافظه با دسترسی تصادفی (RAM)، میکروپروسسورها و پردازنده*های سیگنال دیجیتال (DSPs) هستند.


اهمیت
ترانزیستور از سوی بسیاری بعنوان یکی از بزرگترین اختراعات در تاریخ نوین مطرح شده است، در رتبه بندی از لحاظ اهمیت در کنار ماشین چاپ، خودرو و ارتباطات الکترونیکی و الکتریکی قرار دارد. ترانزیستور عنصر فعال کلیدی در الکترونیک مدرن است. اهمیت ترانزیستور در جامعه امروز متکی به قابلیت آن برای تولید انبوه که از یک فرآیند (ساخت) کاملاً اتماتیک که قیمت تمام شده هر ترانزیستور در آن بسیار ناچیز است استفاده می*کند. اگرچه ملیون ها ترانزیستور هنوز تکی (به صورت جداگانه) استفاده می*شوند ولی اکثریت آنها به صورت مدار مجتمع (اغلب به صورت مختصر IC و همچنین میکرو چیپ یا به صورت ساده چیپ نامیده می*شوند) همراه با دیودها، مقاومت ها، خازن ها و دیگر قطعات الکترونیکی برای ساخت یک مدار کامل الکترونیک ساخته می*شوند.یک گیت منطقی حاوی حدود بیست ترانزیستور است در مقابل یک ریزپردازنده پیشرفته سال 2006 که می*تواند از بیش از 7/1 ملیون ترانزیستور استفاده کند (ماسفت ها)[1]. قیمت کم، انعطاف پذیری و اطمینان از ترانزیستور یک قطعه همه کاره برای وظایف غیرمکانیکی مثل محاسبه دیجیتال ساخته است. مدارات ترانزیستوری به خوبی جایگزین دستگاه*های کنترل ادوات و ماشین ها شده اند. استفاده از یک میکروکنترلر استاندارد و نوشتن یک برنامه رایانه*ای که عمل کنترل را انجام می*دهد اغلب ارزان تر و موثرتر از طراحی معادل مکانیکی آن می*باشد. بعلت قیمت کم ترانزیستورها و ازاینرو رایانه*ها گرایشی برای دیجیتال کردن اطلاعات وجود دارد. با رایانه*های دیجیتالی که توانایی جستوجوی سریع، دسته بندی و پردازش اطلاعات دیجیتال را ارائه می*کنند، تلاش بیشتری برای دیجیتال کردن اطلاعات شده است.در نتیجه امروزه داده های رسانه ای بیشتری به دیجیتال تبدیل می*شوند، در پایان توسط رایانه تبدیل شده و به صورت آنالوگ در اختیار قرار می*گیرد. تلوزیون، رادیو و روزتامه*ها چیزهایی هستند که تحت تاثیر این انقلاب دیجیتال واقع شده اند.
مزایای ترانزیستورها بر لامپ های خلإ
قبل از گسترش ترانزیستورها، لامپ های خلإ (یا در UK لاپ های ترمیونیک یا فقط لامپ ها) قطعات فعال اصلی تجهیزات الکترونیک بودند. مزایای کلیدی که به ترانزیستورها اجازه جایگزینی با لامپ های خلإ سابق در بیشتر کاربردها را داد در زیر آمده است: اندازه کوچک تر (با وجود ادامه کوچک سازی لامپ های خلإ) تولید کاملاً اتوماتیک هزینه کمتر (در حجم تولید) امکان ولتاژ کاری پایین تر ( اما لامپ های خلإ در ولتاژهای بالاتر می*توانند کار کنند) نداشتن دوره گرم شدن (بیشتر لامپ های خلإ به 10 تا 60 ثانیه زمان برای عملکرد صحیح نیاز دارند) تلفات توان کمتر (نداشتن توان گرمایی،ولتاژ اشباع خیلی پایین) قابلیت اطمینان بالاتر و سختی فیزیکی بیشتر( اگرچه لامپ های خلإ از نظر الکتریکی مقاوم ترند. همچنین لامپ خلإ در برابر پالس های الکترومغناطیسی هسته*ای (NEMP) وتخلیه الکترو استاتیکی (ESD) مقاوم ترند عمر خیلی بیشتر (قطب منفی لامپ خلإ سرانجام ازبین می*رود و خلإ آن می*تواند آلوده بشود) فراهم آوردن دستگاه*های مکمل (امکان ساختن مدارات مکمل متقارن: لامپ خلإ قطبی معادل نوع مثبت BJTها و نوع مثبت FETها در دسترس نیست) قابلیت کنترل جریان بالا (ترانزیستورهای قدرت بریای کنترل صدها آمپر در دسترسند، لامپ های خلإ برای کنترل حتی یک آمپر بسیار بزرگ و هزینه برند) میکروفونیک بسیار کمتر (لرزش می*تواند با خصوصیات لامپ خلإ تلفیق شود، به هر حال این ممکن است در صدای تقویت کننده*های گیتار شرکت کند)

تاریخچه

اولین سه حق ثبت اختراع ترانزیستور اثرمیدان در سال 1928 در آلمان توسط فیزک دانی به نامJulius Edgar Lilienfeld ثبت شد، اما او هیچ مقاله*ای در باره قطعه اش چاپ نکرد و این سه ثبت اختراع از طرف صنعت نادیده گرفته شد. در سال 1934 فیزیکدان آلمانی دکتر Oskar Heil ترانزیستور اثر میدان دیگری را به ثبت رساند. هیچ مدرک مستقیمی وجود ندارد که این قطعه ساخته شده است، اما بعداً کارهایی در دهه 1990 نشان داد که یکی از طرح های Lilienfeld کار کرده و گین قابل توجه*ای داده است. اوراق قانونی از آزمایشگاه*های ثبت اختراع بل نشان می*دهد که Shockley و Pearson یک نسخه قابل استفاده از اختراع Lilienfeld ساخته اند، در حالی که آنها هیچگاه این را در تحقیقات و مقالات خود ذکر نکردند. ترانزیستورهای دیگر، R. G. Arns در 16 دسامبر 1947 Wiliam Shockley, John Bardan و Walter Brattain موفق به ساخت اولین ترانزیستور اتصال نقطه*ای در آزمایشگاه بل شدند. این کار با تلاش های زمان جنگ برای تولید دیودهای مخلوط کننده ژرمانیم خالص "کریستال" ادامه یافت، این دیودها در واحدهای رادار بعنوان عنصر میکسر فرکانس در گیرنده*های میکروموج استفاده می*شد. یک پروژه موازی دیودهای ژرمانیم در دانشگاه Purdue موفق شد کریستال های نیمه هادی ژرمانیم را با کیفیت خوب که در آزمایشگاه*های بل استفاده می*شد را تولید کند.[2] سرعت سوئیچ تکنولوژی لامپی اولیه برای این کار کافی نبود، همین تیم Bell را سوق داد تا از دیودهای حالت جامد به جای آن استفاده کنند. آنها با دانشی که در دست داشتند شروع به طراحی سه قطبی نیمه هادی کردند، اما دریافتند که کار ساده*ای نیست. Bardeen سرانجام یک شاخه جدید فیزیک سطحی را برای محاسبه رفتار عجیبی که دیده بودند ایجاد کرد و سرانجام Brattain و Bardeen موفق به ساخت یک قطعه کاری شدند. آزمایشگاه*های تلفن بل به یک اسم کلی برای اختراع جدید نیاز داشتند: "سه قطبی نیمه هادی"، "سه قطبی جامد"، "سه قطبی اجزاء سطحی"، "سه قطبی کریستال" و "لاتاتورن" که همه مطرح شده بودند، اما "ترانزیستور" که توسط John R. Pierce ابداع شده بود، برنده یک قرعه کشی داخلی شد. اساس وبنیاد این اسم در یاداشت فنی بعدی شرکت رای گیری شد: ترانزیستور، این یک ترکیب مختصر از کلمات "ترانسکانداکتانس" یا "انتقال" و "مقاومت متغیر" است. این قطعه منطقاً متعلق به خانواده مقاومت متغیر می*باشد و یک امپدانس انتقال یا گین دارد بنابراین این اسم یک ترکیب توصیفی است. -آزمایشگاه*های تلفن بل- یاداشت فنی(28 می 1948) Pierce این نام را قدری متفاوت تفسیر کرد: دلیلی که من این نام را انتخاب کردم این بود که من فکر کردم این قطعه چکار می*کند، در آن زمان تصور می*شد که این قطعه مثل دو لامپ خلإ است. لامپ های خلإ هدایت انتقالی دارند بنابراین ترانزیستور مقاومت انتقالی دارد. و این اسم می بایست متناسب با نام دیگر قطعات مثل وریستور، ترمیستور باشد. و من اسم ترانزیستور را پیشنهاد کردم. PBC Show مصاحبه با john R. Pierce بل فوراً ترانزیستور تک اتصالی را جزء تولیدات انحصاری شرکت Western Electric، شهر Allentown در ایالت Pennsylvania قرار داد. نخستین ترانزیستورهای گیرنده*های رادیو AM در معرض نمایش قرار گرفتند، اما در واقع فقط در سطح آزمایشگاهی بودند.بهرحال در سال 1950 Shockley یک نوع کاملاً متفاوت ترانزیستور را ارائه داد که به ترانزیستور اتصال دوقطبی معروف شد. اگرچه اصول کاری این قطعه با ترانزیستور تک اتصالی کاملاً فرق می*کند، قطعه*ای است که امروزه به عنوان ترانزیستور شناخته می*شود. پروانه تولید این قطعه نیز به تعدادی از شرکت های الکترونیک شامل Texas Instrument که تعداد محدودی رادیو ترانزیستوری بعنوان ابزار فروش تولید می*کرد داده شد. ترانزیستورهای اولیه از نظر شیمیایی ناپایدار بودند و فقط برای کاربردهای فرکانس و توان پایین مناسب بودند، اما همینکه طراحی ترانزیستور توسعه یافت این مشکلات نیز کم کم رفع شدند. اگرچه اغلب نادرست به Sony نسبت داده می*شود، ولی اولین رادیو ترانزیستوری تجاری Regency TR-1 بود که توسط Regency Division از I.D.E.A (گروه مهنسی توصعه صنعتی) شهر Indianapolis ایالت Indiana ساخته شده و در 18 اکتبر 1954 اعلام شد. آین رادیو در نوامبر 1954 به قیمت 95/49 دلار(معادل با 361 دلار در سال 2005) به فروش گذاشته شد و تعداد 150000 از آن به فروش رفت. این رادیو از 4 ترانزیستور استفاده می*کرد وبا یک باتری 5/22 ولتی راه اندازی می*شد. هنگامیکه Masaru Ibuka ، موسس شرکت ژاپنی سونی از آمریکا دیدن می*کرد آزمایشگاه*های بل ارائه مجوز ساخت شامل ریز دستوراتی مبنی بر چگونگی ساخت ترانزیستور را اعلام کرده بودند. Ibuka مجوز خرید 50000 دلاری پروانه تولید را از وزیر دارایی ژاپن گرفت و در سال 1955 رادیوی جیبی خود را تحت مارک سونی معرفی کرد. (کلمه جیبی اشاره دارد به مطلب بدنامی سونی وقتیکه فروشنده آنها پیراهن مخصوصی با جیب های بزرگ داشت). این محصول بزودی با طرح های بلند پروازانه ادامه پیدا کرد، اما آنها بعنوان آغاز رشد شرکت سونی از طرف عموم مورد توجه قرار می*گرفتند تا سونی به یک قدرت تولیدی تبدیل شد. بعد از دو دهه ترانزیستورها بتدریج جای لامپ های خلإ را در بسیاری از کاربردها گرفتند و بعد ها امکان تولید دستگاه*های جدیدی از قبیل مدارات مجتمع و رایانه*های شخصی را فراهم آوردند. از Shockley, Bardeen و Brattian بخاطر تحقیقاتشان در مورد نیمه هادی ها وکشف اثر ترانزیستر با جایزه نوبل فیزیک قدردانی شد. Bardeen می*رفت که دومین جایزه نوبل فیزیک را دریافت کند، یکی از دو نفری که بیش از یک جایزه از یک متد می*گرفت. اولین ترانزیستور Gallium-Arsenide Schottky-gate توسط Carver Mead ساخته و در سال 1966 گزارش داده شد.


کاربرد
ترانزیستور دارای 3 ناحیه کاری می*باشد.ناحیه قطع/ناحیه فعال(کاری یا خطی)/ناحیه اشباع ناحیه قطع حالتی است که ترانزیستور در ان ناحیه فعالیت خاصی انجام نمی*دهد.اگر ولتاژ بیس را افزایش دهیم ترانزیستور از حالت قطع بیرون امده و به ناحیه فعال وارد می*شود در حالت فعال ترانزیستور مثل یک عنصر تقریبا خطی عمل می*کند اگر ولتاژ بیس را همچنان افزایش دهیم به ناحیه*ای میرسیم که با افزایش جریان ورودی در بیس دیگر شاهد افزایش جریان بین کلکتور و امیتر نخواهیم بود به این حالت می*گویند حالت اشباع و اگر جریان ورودی به بیس زیاد تر شود امکان سوختن ترانزیستور وجود دارد. ترانزیستور هم در مدارات الکترونیک آنالوگ و هم در مدارات الکترونیک دیجیتال کاربردهای بسیار وسیعی دارد. درمدارات آنالوگ ترانزیستور در حالت فعال کار می*کند و می*توان از آن به عنوان تقویت کننده یا تنظیم کننده ولتاژ (رگولاتور) و ... استفاده کرد. و در مدارات دیجیتال ترانزیستور در دو ناحیه قطع و اشباع فعالیت می*کند که می*توان از این حالت ترانزیستور در پیاده سازی مدار منطقی، حافظه، سوئیچ کردن و ... استفاده کرد.به جرات می*توان گفت که ترانزیستور قلب تپنده الکترونیک است.

عملکرد
ترانزیستور از دیدگاه مداری یک عنصر سه*پایه می*باشد که با اعمال یک سیگنال به یکی از پایه*های آن میزان جریان عبور کننده از دو پایه دیگر آن را می*توان تنظیم کرد. برای عملکرد صحیح ترانزیستور در مدار باید توسط المان*های دیگر مانند مقاومت*ها و ... جریان*ها و ولتاژهای لازم را برای آن فراهم کرد و یا اصطلاحاً آن را بایاس کرد.
انواع
دو دسته مهم از ترانزیستورها BJT (ترانزیستور دوقطبی پیوندی) (Bypolar Junction Transistors) و FET (ترانزیستور اثر میدان) (Field Effect Transistors) هستند. ترانزیستورهای اثزمیدان یا FET*ها نیز خود به دو دستهٔ ترانزیستور اثر میدان پیوندی(JFET) و MOSFET*ها (Metal Oxide SemiConductor Field Effect Transistor) تقسیم می*شوند.

ترانزیستور دوقطبی پیوندی
در ترانزیستور دو قطبی پیوندی با اعمال یک جریان به پایه بیس جریان عبوری از دو پایه کلکتور و امیتر کنترل می*شود. ترانزیستورهای دوقطبی پیوندی در دونوع npn و pnp ساخته می*شوند. بسته به حالت بایاس این ترانزیستورها ممکن است در ناحیه قطع، فعال و یا اشباع کار کنند. سرعت بالای این ترانزیستورها و بعضی قابلیت*های دیگر باعث شده که هنوز هم از آنها در بعضی مدارات خاص استفاده شود. امروزه بجای استفاده از مقاومت وخازن و...در مدارات مجتمع تمامآازترانزیستوراستفاده می*کنند


ترانزیستور اثر میدان پیوندی(JFET)
در ترانزیستورهای JFET(Junction Field Effect Transistors( در اثر میدان، با اعمال یک ولتاژ به پایه گیت میزان جریان عبوری از دو پایه سورس و درین کنترل می*شود. ترانزیستور اثر میدانی بر دو قسم است: نوع n یا N-Type و نوع p یا P-Type. از دیدگاهی دیگر این ترانزیستورها در دو نوع افزایشی و تخلیه*ای ساخته می*شوند.نواحی کار این ترانزستورها شامل "فعال" و "اشباع" و "ترایود" است این ترانزیستورها تقریباً هیچ استفاده*ای ندارند چون جریان دهی آنها محدود است و به سختی مجتمع می*شوند.
انواع ترانزیستور پیوندی

pnp
شامل سه لایه نیم هادی که دو لایه کناری از نوع p و لایه میانی از نوع n است و مزیت اصلی آن در تشریح عملکرد ترانزیستور این است که جهت جاری شدن حفره*ها با جهت جریان یکی است.
شامل سه لایه نیم* هادی که دو لایه کناری از نوع n و لایه میانی از نوع p است. پس از درک ایده*های اساسی برای قطعهٔ pnp می*توان به سادگی آنها را به ترانزیستور پرکاربردتر npn مربوط ساخت.
ساختمان ترانزیستور پیوندی ترانزیستور دارای دو پیوندگاه است. یکی بین امیتر و بیس و دیگری بین بیس و کلکتور. به همین دلیل ترانزیستور شبیه دو دیود است. دیود سمت چپ را دیود بیس _ امیتر یا صرفاً دیود امیتر و دیود سمت راست را دیود کلکتور _ بیس یا دیود کلکتور می*نامیم. میزان ناخالصی ناحیه وسط به مراتب کمتر از دو ناحیه جانبی است. این کاهش ناخالصی باعث کم شدن هدایت و بالعکس باعث زیاد شدن مقاومت این ناحیه می*گردد.
امیتر که به شدت آلائیده شده، نقش گسیل و یا تزریق الکترون به درون بیس را به عهده دارد. بیس بسیار نازک ساخته شده و آلایش آن ضعیف است و لذا بیشتر الکترونهای تزریق شده از امیتر را به کلکتور عبور می*دهد. میزان آلایش کلکتور کمتر از میزان آلایش شدید امیتر و بیشتر از آلایش ضعیف بیس است و کلکتور الکترونها را از بیس جمع*آوری می*کند.

بازسازی اولین ترانزیستور جهان
طرز کار ترانزیستور پیوندی طرز کار ترانزیستور را با استفاده از نوع npn مورد بررسی قرار می*دهیم. طرز کار pnp هم دقیقا مشابه npn خواهد بود، به شرط اینکه الکترونها و حفره*ها با یکدیگر عوض شوند. در نوع npn به علت تغذیه مستقیم دیود امیتر ناحیه تهی کم عرض می*شود، در نتیجه حاملهای اکثریت یعنی الکترونها از ماده n به ماده p هجوم می*آورند. حال اگر دیود بیس _ کلکتور را به حالت معکوس تغذیه نمائیم، دیود کلکتور به علت بایاس معکوس عریض*تر می*شود.
الکترونهای جاری شده به ناحیه p در دو جهت جاری می*شوند، بخشی از آنها از پیوندگاه کلکتور 
عبور کرده، به ناحیه کلکتور می*رسند و تعدادی از آنها با حفره*های بیس بازترکیب شده و به عنوان الکترونهای ظرفیت به سوی پایه خارجی بیس روانه می*شوند، این مولفه بسیار کوچک است.

شیوهٔ اتصال ترازیستورها
اتصال بیس مشترک در این اتصال پایه بیس بین هر دو بخش ورودی و خروجی مدار مشترک است. جهتهای انتخابی برای جریان شاخه*ها جهت قراردادی جریان در همان جهت حفره*ها می*شود.
اتصال امیتر مشترک مدار امیتر مشترک بیشتر از سایر روشها در مدارهای الکترونیکی کاربرد دارد و مداری است که در آن امیتر بین بیس و کلکتور مشترک است. این مدار دارای امپدانس ورودی کم بوده، ولی امپدانس خروجی مدار بالا می*باشد.
اتصال کلکتور مشترک اتصال کلکتور مشترک برای تطبیق امپدانس در مدار بکار می*رود، زیرا برعکس حالت قبلی دارای امپدانس ورودی زیاد و امپدانس خروجی پائین است. اتصال کلکتور مشترک غالبا به همراه مقاومتی بین امیتر و زمین به نام مقاومت بار بسته می*شود.


ترانزیستور اثر میدان MOS
این ترانزیستورها نیز مانند Jfet*ها عمل می*کنند با این تفاوت که جریان ورودی گیت آنها صفر است. همچنین رابطه جریان با ولتاژ نیز متفاوت است. این ترانزیستورها دارای دو نوع PMOS و NMOS هستند که فناوری استفاده از دو نوع آن در یک مدار تکنولوژی CMOS نام دارد. این ترانزیستورها امروزه بسیار کاربرد دارند زیرا براحتی مجتمع می*شوند و فضای کمتری اشغال می*کنند. همچنین مصرف توان بسیار ناچیزی دارند.
به تکنولوژی*هایی که از دو نوع ترانزیستورهای دوقطبی و Mosfet در آن واحد استفاده می*کنند Bicmos می*گویند.
البته نقطه کار این ترانزیستورها نسبت به دما حساس است وتغییر می*کند. بنابراین بیشتر در سوئیچینگ بکار می*روند AMB
ساختار و طرز کار ترانزیستور اثر میدانی  ف
ترانزیستور اثر میدانی ( فت ) - FET همانگونه که از نام این المام مشخص است، پایه کنترلی آن جریانی مصرف نمی*کند و تنها با اعامل ولتاژ و ایجاد میدان درون نیمه هادی ، جریان عبوری از FET کنترل می*شود. به همین دلیل ورودی این مدار هیچ کونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی گذارد و امپدانس بسیار بالایی دارد
فت دارای سه پایه با نهامهای درِین D - سورس S و گیت G است که پایه گیت ، جریان عبوری از درین به سورس را کنترل می نماید. فت ها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور می*کند . FET ها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک می*گردند. به همین دلیل نسبت به نویز بسیار حساس هستند.
نوع دیگر ترانزیستورهای اثر میدانی MOSFET ها هستند ( ترانزیستور اثر میدانی اکسید فلزی نیمه هادی - Metal-Oxide Semiconductor Field Efect Transistor ) یکی از اساسی ترین مزیت های ماسفت ها نویز کمتر آنها در مدار است.
فت ها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر ، نخست پایه گیت را پیدا می کنیم. یعنی پایه*ای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق می*توان پایه درین را از سورس تشخیص داد.
سلف
از ECA-wiki
سلف یک عنصر غیر فعال الکترونیکی است که می تواند انرژی الکتریکی را در مجاورت یک هادی و در داخل یک میدان مغناطیسی که به وسیله جریان الکتریکی موجود در هادی به وجود آمده، ذخیره کند. توانایی سلف برای ذخیره انرژی ضریب خود القایی گفته می شود و واحد آن نیز هانری می باشد. 
یک سلف ایده آل دارای خود القایی است، اما مقاومت اهمی و خاصیت خازنی نداشته و انرژی را نیز تلف نمی کند. یک سلف واقعی را می توان معادل ترکیبی از مقداری خود القایی، مقداری مقاومت اهمی ناشی از مقاومت سیم و کمی نیز خاصیت خازنی در نظر گرفت. در یک فرکانس خاص که معمولاً خیلی بالاتر از فرکانس کار سلف قرار دارد، یک سلف واقعی رفتاری به مانند یک مدار رزونانس خواهد داشت. ( این حالت ناشی از خاصیت خازنی موجود در سلف می باشد ). سلف های دارای هسته مغناطیسی علاوه بر اتلاف انرژی در مقاومت اهمی سیم، ممکن است مقداری تلفات نیز در هسته خود داشته باشند که آن را تلفات هیسترزیس می نامند. همچنین در جریان های زیاد به دلیل غیر خطی بودن، ممکن است تقاوت های دیگری را نیز در مقایسه با رفتار یک سلف ایده ایده آل از خود نشان دهد. 
بررسی فیزیکی
خود القایی ( با واحد هانری ) در اثر شکل گیری میدان مغناطیسی حول یک حامل هادی جریان به وجود می آید و همواره با تغییرات جریان در هادی مقابله می کند. جریان الکتریکی در هادی ، یک شار مغناطیسی متناسب با جریان می سازد. بروز یک تغییر در این جریان موجب تغییر در شار مغناطیسی می شود که طبق قانون فارادی یک نیروی محرکه الکتریکی ( EMF ) در جهت عکس تولید کرده و این نیرو در مخالفت با این تغییر به وجود آمده، عمل می کند. ضریب خود القایی مقیاسی است برای اندازه گیری مقدار EMF تولید شده در ازای یک واحد تغییر در جریان. برای مثال یک سلف با ضریب خود القایی یک هانری، به ازای تغییر جریان با نرخ 1 آمپر بر ثانیه، 1 ولت EMF تولید می کند. تعداد حلقه ها، اندازه هر حلقه و جنس سیم پیچیده شده، همگی در خود القایی سلف مؤثرند. مثلاً شار مغناطیسی پیوندی میان حلقه ها می تواند با پیچیدن هادی به دور ماده ای با ضریب نفوذ پذیری بالا مانند آهن افزایش پیدا کند. این کار می تواند فرکانس را تا 2000 برابر افزایش دهد. 

مدل هیدرولیکی
جریان الکتریکی را می توان با استفاده از یک تشبیه هیدرولیکی مدل سازی کرد. یک سلف را می توان به صورت یک چرخ طیار که تحت تاثیر یک توربین سنگین آبی می چرخد، تصور نمود. در ابتدا که جریان آب برقرار می شود، توربین در حالت ایستا قرار داشته و تا زمانی که کاملاً شروع به چرخش نکرده است، در برابر جریان آب ( جریان الکتریکی ) سد ایجاد می کند و فشار زیادی ( ولتاژ ) را در جهت عکس به وجود می آورد. همچنین زمانی که توربین در حال چرخش است، اگر وقفه ای ناگهانی در جریان آب به وجود آید، توربین همچنان با اینرسی به چرخش خود ادامه می دهد و فشار زیادی را در جهت ادامه یافتن جریان اعمال می کند. 

ساختمان سلف
یک سلف معمولاً از یک سیم پیچ ساخته شده از یک ماده هادی - معمولاً سیم مسی – که بر روی هسته ای از هوا یا ماده ای فرومغناطیسی پیچیده شده، ساخته می شود. مواد تشکیل دهنده هسته با ضریب نفوذپذیری بیشتر از هوا، میدان مغناطیسی را افزایش داده و آن را کاملاً در سلف محبوس می کنند و به این وسیله باعث افزایش خود القایی می شوند. به منظور جلوگیری از ایجاد جریان گردابی، سلف های فرکانس پایین مانند ترانسفورماتور ها با هسته هایی از فولاد ورقه ورقه شده ساخته می شوند. در فرکانس های بالاتر از صوت، فريت های نرم به طور گسترده ای به عنوان هسته مورد استفاده قرار می گیرند زیرا بر خلاف آلیاژ های معمولی آهن که در فرکانس های بالا انرژی زیادی را تلف می کنند، تلفات زیادی ندارند و این به دلیل منحنی هیسترزیس باریک آن ها می باشد و اینکه مقاومت اهمی این نوع هسته ها از برقراری جریان گردابی جلوگیری می کند. سلف ها در شکل های مختلفی موجود می باشند. بیشتر آن ها به شکل یک سیم عایق شده ( سیم لاکی ) که بر روی یک بوبین از جنس فریت پیچیده شده است و دو سر سیم ها در بیرون آن آزاد هستند، ساخته می شوند و حال آنکه در بعضی دیگر، سیم پیچ به طور کامل در فریت قرار می گیرد که این گونه سلف ها را حفاظت شده ( shielded ) می نامند. دسته ای از سلف ها دارای هسته متغیر می باشند که این امکان، قابلیت تغییر دادن ضریب خودالقایی سلف را فراهم می سازد. گاهی برای مانع شدن از عبور فرکانس های بسیار بالا، سلف ها را به صورت یک استوانه از جنس فریت ساخته و بر روی سیم ( طوری که سیم از میان آن عبور کند ) قرار می دهند. 



مشخصه هاي سلف
خودالقايي
مهم ترين مشخصه سلف ، خود القايي آن مي باشد . خود القايي يك سلف مخالفت آن سلف را در مقابل تغيير جريان الكتريكي نشان مي دهد
كيفيت
يك سلف با طول معيني از يك سيم هادي ساخته مي شود . بنابراين داراي مقاومت نيز مي باشد. بنابراين يك سلف واقعي از يك سلف ايده آل و يك مقاومت سري با آن تشكيل شده است . كيفيت يك سلف نسبت راكتانس سلف به مقدار مقاومت آندر فركانسي خاص مي باشد
ماكزيمم فركانس كاري ( فركانس رزنانس
با افزايش فركانس ، راكتانس سلف افزايش مي يابد. در عمل اين افزايش در امپدانس سلف تا فركانس مشخصي صورت مي گيرد و از اين فركانس به بالا اثر خازن هاي پراكنده در سلف ظاهر مي گيردد و امپدانس سلف كاهش مي يابد . 

بررسی سلف در مدار های الکتریکی
یک سلف با تغییرات جریان مخالفت می کند. سلف ایده آل در برابر جریان ثابت نباید از خود مقاومت نشان دهد اما به هر حال تنها مقاومت سلف های ساخته شده از ابررسانا ها می تواند صفر باشد. در حالت کلی، رابطه میان ولتاژ متغیر با زمان V(t) در یک سلف با اندوکتانس L و با جریان متغیر با زمان i(t) به صورت یک معادله دیفرانسیل بیان می شود:


وقتی که یک جریان متناوب سینوسی ( AC ) از سلف می گذرد، یک ولتاژ سینوسی در آن القا می شود. دامنه ولتاژ متناسب است با حاصلضرب دامنه جریان (IP ) و فرکانس جریان ( f ).

در این حالت، فاز جریان، 90 درجه از ولتاژ عقب تر است. اگر یک سلف به وسیله یک مقاومت با مقدار R به یک منبع جریان DC متصل شود، و سپس منبع جریان اتصال کوتاه گردد، 


آنالیز مدار در حوزه لاپلاس وقتی در تحلیل مدار از تبدیل لاپلاس استفاده می شود، تبدیل امپدانس یک سلف ایده آل بدون جریان اولیه در حوزه s به صورت زیر نشان داده می شود:


مقدار امپدانس و S فرکانس مختلط می باشد. اگر سلف جریان اولیه داشته باشد، آن را می توان به صورت های زیر نشان داد: 1-اضافه کردن یک منبع ولتاژ سری شده با سلف با مقدار زیر 

به یاد داشته باشید که پلاریته منبع بر خلاف جهت جریان اولیه باشد) 
با اضافه کردن یک منبع جریان موازی با سلف با مقدار زیر:


Lمقدار امپدانس و I0 جریان اولیه سلف می باشد 
شبکه های سلفی
سلف ها در یک آرایش موازی که همگی اختلاف پتانسیل ( ولتاژ ) یکسانی دارند. اندوکتانس معادل (Leq ): 


جریان در سلف های سری شده یکسان است، اما ولتاژ هر کدام از آن ها می تواند متفاوت باشد. مجموع اختلاف پتانسیل ها برابر است با ولتاژ کل. 

اندوکتانس معادل:

این روابط ساده، تا زمانی درست هستند که القای مغناطیسی متقابل بین سلف ها وجود نداشته باشد. 
انرژی ذخیره شده:
انرژی ذخیره شده در سلف، برابر است با مقدار کار مورد نیاز برای برقراری جریان در سلف و ایجاد میدان مغناطیسی. و از رابطه زیر به دست می آید:

عملکرد در RF
در فرکانس های بالا، سلف های واقعی دارای اجزای پارازیتی می باشند و این باعث کاهش کارایی آن ها می شود. سیمی که سلف از آن ساخته شده است، دارای مقاومت اهمی بوده و این مقاومت، ضریب Q را کاهش می دهد. ظرفیت خازنی میان حلقه های سلف، باعث تغییر در عملکرد الکتریکی در نزدیکی فرکانس رزونانس سلف می شود. یک سلف را می توان در RF، با یک سلف ایده آل سری شده با یک مقاومت و یک خازن موازی شده با این دو المان نشان داد. 


ضریب Q
یک سلف ایده آل، بدون در نظر گرفتن اندازه جریان موجود در سیم پیچی، فاقد تلفات می باشد. هر چند سلف های معمولی دارای مقاومت اهمی ناشی از فلز سیم پیچی هستند. از آنجایی که مقاومت سیم پیچی همانند یک مقاومت سری شده با سلف به نظر می رسد، معمولاً مقاومت سری نامیده می شود. مقاومت سری شده با سلف، جریان الکتریکی داخل سیم پیچ را به حرارت تبدیل می کند و به این ترتیب باعث افت کیفیت خودالقایی می شود. ضریب کیفیت ( یا Q ) یک سلف، نسبت رآکتانس سلفی به مقاومت اهمی در یک فرکانس معین بوده و معیاری برای سنجش بازدهی آن می باشد. هر قدر میزان ضریب کیفیت سلف بالاتر باشد، به رفتار یک سلف ایده آل و بدون تلفات نزدیکتر می شود. ضریب Q یک سلف، از طریق فرمول زیر به دست می آید که در آن R مقاومت الکتریکی داخلی و ωL رآکتانس سلفی و یا خازنی در فرکانس رزونانس می باشد. 


با استفاده از یک هسته فرومغناطیسی، با همان میزان مس، خود القایی به شدت افزایش پیدا می کند. به هر حال هسته ها تلفاتی را که با افزایش فرکانس بیشتر می شوند، کاهش می دهند. نوع ماده هسته، برای بدست آوردن بهترین نتیجه در باند فرکانسی مورد نظر انتخاب می شود. در VHF یا فرکانس های بالاتر، از هسته هوا استفاده می شود. ممکن است در جریان های بالا، به دلیل کاهش چشم گیر خود القایی، سلف های پیچیده شده بر روی یک هسته فرومغناطیسی به اشباع روند. با استفاده از هسته هوا، می توان از این پدیده جلوگیری نمود. یک سلف با هسته هوا و با طراحی مناسب، می تواند دارای ضریب کیفیت برابر با چند صد باشد. یک سلف تقریباً ایده آل ( با Q میل کننده به سمت بی نهایت ) را می توان با غوطه ورکردن یک سیم پیچ ساخته شده از آلیاژ ابر رسانا در هلیوم مایع و یا نیتروژن مایع ساخت. این کار، سیم را فوق العاده خنک کرده و باعث از بین رفتن مقاومت اهمی سیم پیچ می شود. زیرا یک سلف ساخته شده از ابررسانا، واقعاً بدون تلفات بوده و می تواند مقدار زیادی انرژی الکتریکی را درون میدان مغناطیسی احاطه کننده، ذخیره کند.
منابع:
هوپا



نظرات شما عزیزان:

نام :
آدرس ایمیل:
وب سایت/بلاگ :
متن پیام:
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

 

 

 

عکس شما

آپلود عکس دلخواه: